
A12
LOW CODE FOR CUSTOM ENTERPRISE SOFTWARE

2023.06 LTS

Legal notice

Authors:

Hamarz Mehmanesh

Sabine Gandenberger

Ansgar Weiss

Thomas Kneist

Sebastian Lorenz

Martin Backschat

mgm technology partners GmbH

Taunusstr. 23

80807 Munich

Germany

Tel: +49 (0)89 / 358 680-0

Jurisdiction and place of performance: Munich

All rights reserved.

Permission required for any reproduction, even excerpts.

© 2023 mgm technology partners GmbH

www.mgm-tp.com

Contents
1.	 Executive Summary	
1.1	 What is A12?
1.2 	 For Which Operational Scenarios Is A12 Designed?	
1.3	 What Benefits Does A12 Provide?

2. 	 Motivation and Approach

2.1	 From Micro Apps to Integrated Enterprise Applications	
2.2 	 The True Cost of Enterprise Software Development	
2.3 	 Model-Driven Development
2.4 	 Digital and Data Sovereignty

3. 	 Plasma UI/UX Design System

3.1 	 Efficient User Interfaces for Enterprise Software
3.2 	 Methodology for Coherent User Experience
3.3	 Accessible Web Applications

4.	 Modeling Platform	

4.1	 Modeling: A New Software Development Discipline?	
4.2	 The Modeling Concept of A12	
4.3	 Advantages of “Data First” Modeling with the
	 A12 Rule Language
4.4	 Modeling Tools for Data, Form and App Design 	
4.5	 Installer: Using Modeling Tools Locally

5.	 Runtime Platform

5.1	 A Different Range of Tasks for Developers
5.2	 Architecture
5.3	 Components
5.4	 Project Template
5.5	 Operations

6.	 Appendix A: Technologies

4

5
5
6

7

8
8

13
14

15

16
16
16

18

19
19
26

27
30

31

32
34
38
49
50

52

Executive Summary
A12 is an Enterprise Low Code Platform for realizing enterprise
applications in complex IT landscapes.

This white paper presents the A12 approach and demonstrates how
it can be used to turn applications into fully integrated enterprise
applications that will work for a long time to come.

01

1. Executive Summary

Structure of the A12 Platform

For Which
Operational
Scenarios Is
A12 Designed?
A12 is intended for professional custom software devel-
opment projects. It is aimed at large and medium-sized
companies, and public authorities that need highly scal-
able, secure, robust, and potentially business-critical
web applications.

This includes form-based applications, portals and ad-
ministrative processes for the public sector, underwrit-
ing platforms for industrial insurance, and integrated
solutions for online, retail and mail order businesses
(Multi-Channel).

Using A12 is particularly beneficial in overarching sce-
narios. The model-driven approach makes it possible to
use the modelled business expertise across all applica-
tions. This ensures consistency, prevents duplication,
simplifies release and dependency management and
reduces testing overhead.

A12 Modeling Platform

Editor

Model types

Validation &
Calculation

Modular, flexibly applicable client- and server-side

components in a modern enterprise architecture

A12’s modeling platform provides tools to quickly
create and maintain parts of an application with-
out programming skills.

A12’s runtime platform provides the flexibility to de-
velop low code applications in combination with pro-
fessional custom software development and system
integration which evolve into fully integrated enter-
prise applications.

A12 Runtime Platform

A12

OVERVIEW
MODEL

OM

A12

APP
MODEL

AM

A12

TREE
MODEL

TM

A12

RELATIONSHIP
MODEL

RM

A12

FORM
MODEL

FM

A12

VALIDATION
LANGUAGE

VL

A12

SIMPLE
MODEL
EDITOR

SME

A12

DM
DOCUMENT
MODEL

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

D ATA S E R V I C E S

K E R N E L

U
A

A

A12

PM
PRINT
MODEL

5

1. Executive Summary

What Benefits Does A12 Provide?

Handling your business content yourself
Business experts and analysts can use the modeling tools themselves to create the
software’s domain-specific core and maintain it in the long term.

•	 Adjust business aspects without programming knowledge
•	 Implement business changes rapidly
•	 Automate the software development process extensively

An open platform, not a closed ecosystem
A12 is designed as an open system. It provides an enormous amount of flexibility
for software development, long-term maintenance and further development.

•	 Flexible use of modular runtime components
•	 Systematic use of open source technology
•	 APIs for individual extensions at any level
•	 Full operational control – on-premises or (private) cloud-based
•	 Requirements can be entered directly into the A12 base

Future-proof platform for long-lasting software
The consistent separation of business-specific models and technology makes it
possible to retain the business-specific core even in the case of technological leaps.

•	 Detached innovation of technology through model-based approach
•	 “Data First” principle for sustainable domain-oriented modeling
•	 Careful technology selection and use of industry standards
•	 Continuous development of the technical basis

6

Motivation and Approach
mgm’s goal is to faster and more economically build enter-
prise software that is robust, secure and durable. Our expe-
rienced software engineers back up this claim. They work at
gradually reducing the typical expenditure involved in devel-
oping enterprise applications. This is first and foremost done
by using model-driven abstractions and separating business
expertise and technology.

02

2. Motivation and Approach

From Micro Apps to Integrated Enterprise Applications
Many enterprise applications generally originate as
pragmatic makeshift solutions in separate business
departments. More often than not, they start off as
small Excel tables. They get bigger and bigger, in-
corporate macros and end up becoming almost like
applications themselves! This pragmatic approach
(“shadow IT”) has its downsides, namely major data
protection and IT security risks.

Low code platforms aim to eliminate the potential

breaches caused by makeshift solutions with appli-
cations. They give business departments the oppor-
tunity to build their own real applications, taking into
account company-specific IT guidelines. This step is
perfect for those makeshift solutions that have par-
ticular potential. Another challenge arises for another
subset of micro apps, of course, usually for the ones
that are most critical to business: they must be inte-
grated into a heterogeneous IT landscape. Most low
code platforms come with turnkey solutions for the

most common integration scenarios. But they do have
their limits. Custom development and professional
system integration are unavoidable.

A12 not only helps you with the transition to micro
applications, but also with moving towards integrat-
ed enterprise applications. In the long term, this is
where companies spend the most money: in the de-
velopment, maintenance and operation of enterprise
applications.

The True Cost of Enterprise Software Development
mgm has been developing custom enterprise software
for over 25 years. The core concept behind A12 is based
on a series of observations that we made over and over
on a wide variety of projects. Most importantly, the
usual cost drivers (business adjustments and integra-
tions) that occur once a project has been started are
constantly underestimated and can end up being the
reason why IT projects fail over the long term, even very
large ones.

Enterprise domains – anything but standard

Every enterprise software program models a certain
aspect of a company’s reality. The particular model
is based on the enterprise domain. The enterprise do-
main comprises a set of (enterprise) entities. These
might be things like clients, products or orders. Each
of these entities is represented by an entity model in
the software. This model defines the entity’s struc-
ture, attributes and relationships with other entities.
Entity models are subject to constant change, which is
often a major cost driver in enterprise software devel-
opment.

The following points are primarily
responsible for change:

�	 A growing business is a complex network. All the 	
	 company knowledge is spread out in different people’s 	
	 brains. There are many factors that influence the 	
	 business that individual company representatives deal 	
	 with over and over again.

�	 The company continues growing. The portfolio changes. 	
	 New distribution channels are added; others are eliminated. 	
	 Different branches have to adhere to new regulatory 	
	 requirements.

�	 Each company organises their business in their 		
	 own way depending on a variety of different rules. 	
	 What’s more, they all use their own terminology, which 	
	 is constantly growing and changing.

8

Models are yet another cost driver. Models gradually
get more complex. They map aspects of reality that
are constantly growing and that are relevant to the re-
spective enterprise domain’s success.

The figure illustrates just how complex they can get,
for example when mapping a tax form.

2. Motivation and Approach

And so, the models on which different
enterprise software programs are based
do not follow the same standards.
On the contrary, they are highly individual-
ised, always have exceptions and some-
times even inconsistencies.

9

Enterprise IT and Shadow IT

Classic Enterprise IT in companies is structured centrally. The standard software and all
custom-developed software used must comply with certain standards. But people are finding
more and more solutions outside enterprise IT for department-specific requirements. They
are created as Excel-based solutions or basic micro apps, for example. This often happens
without telling the IT department. And thus shadow IT is created.

Shadow IT

Micro app
low code

cloud solutionEnterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

Enterprise business
department

Excel App

Excel App
Excel App

Cloud
soiution

Enterprise low code development

If departments can design their own applications with the right low code tools and the IT
department can secure the technology and standards centrally at the same time, enter-
prise applications with true value can be created. The low code part can be individually
weighted depending on the project. The goal is to get the department and IT experts
working together effectively.

Enterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

Models
+

low code

Custom
development

System
integration

Business
department low

code editor

LC Business
department low

code editor

LC

Business
department low

code editor

LC

E
N

T
E

R
P

R
IS

E
 L

O
W

 C
O

D
E

S
T

A
N

D
A

R
D

 L
O

W
 C

O
D

E

Business experts

IT experts

IT experts

Operations

App is
ready

Dynamic weighting of low code and custom development

Custom Enterprise Projects require project-specific and customised methods. There can be a lot of
variation in the weighting of low code and custom development from project to project. But the weight-
ing can also vary considerably throughout the different life cycle phases of an IT project.

S TA N D A R D S O F T W A R E I N D I V I D U A L S O F T W A R E

Business
department low code

editor

Custom
development

System
integration

Models
+

low code

Enterprise IT
C O M P L I A N C E

S TA N D A R D S

S E C U R I T Y

LC

Business
department low code

editor

LC

Business
department low code

editor

Business
department low code

editor

LC

1 2 3 4 5 6 7

Different Representations
of Enterprise Entities

The business model is the starting point. It is a model for
implementation – the first representation of the modelled
enterprise entities and their relationships to each other.
The following representations occur in a
three-tier architecture:

�	 The enterprise objects are stored in a database in the 	
	 data tier. Therefore, the representation needs to meet 	
	 the requirements of this persistence level (1). The data 	
	 is presented in tabular form in a relational database. 	
	 Object-relational mapping is required so that the table 	
	 data can be processed in an object-oriented high-level 	
	 language like Java (2).

�	 The application logic is stored in the business tier. 	
	 It has its own representation (3), which results from 	
	 the respective processing of the enterprise objects, 	
	 components and workflows.

�	 The presentation tier requires yet another 	 	
	 representation (4). This deals with how the enterprise 	
	 entities are presented in the user interface and how you 	
	 can interact with them.

In addition, further representations and mappings of the
enterprise entities are necessary in the following contexts:

�	 Providing services for specific functionalities – for 	
	 example, checking stock (5).
�	 Generating Word or PDF documents such as insurance 	
	 policies and administrative notices (6).

�	 Integrating the application into other systems in the 	
	 company’s IT infrastructure (7).

�	 Extensive migrations, that become necessary due 	
	 to further developments of the schema of the underlying 	
	 database (8).

Any change in an enterprise entity leads to more ex-
penditure from a software development point of view.
Why? Because they have to be represented differently
in different technical contexts. And you need map-
pings between these different representations. In
practice, one tiny business change can create a dom-
ino effect of adjustments that need to be made to the
software.

The figure to the right gives an overview of the vari-
ous representations and mappings that are generally
found in enterprise software.

Business
model

Enterprise object

OR mapping

Persistence
S C H E M E V1

Interface

Output

Integration

Migration
S C H E M E V 2

Functional
building blocks

D
A

T
A

P
R

E
S

E
N

T
A

T
IO

N
B

U
S

IN
E

S
S

2. Motivation and Approach

11

The IT landscape of medium-sized to large companies
across all industries all have one thing in common.
They comprise large applications such as SAP or larger
custom applications with a variety of smaller ones. In
a perfect world, all applications would be fully integrat-
ed with regard to their involvement in processing busi-
ness transactions and data exchange. But, because the
technologies used in applications are so different (SAP,
Java applications, cloud-based applications, etc.),
these IT landscapes are usually built on a technological
basis that remains heterogeneous. More specifically,
this means that:

�	 Individual applications in this landscape usually 		
	 have their own project team, release cycles and 	 	
	 technology bases.

�	 Different technology and architecture decisions 		
	 are made for custom applications depending on the 	
	 application’s age and the project team’s preferences 	
	 and decisions. This also applies to integrated 		
	 applications that are based on applications such as 	
	 SAP or MS Dynamics.

�	 Different applications usually also have different 	
	 contact persons on the business side of things. 		
	 These people draft the business specifications for the 	
	 application’s initial and subsequent development.

The heterogeneity of the IT landscape is another cost
driver that even today’s low code approaches cannot
completely resolve. Custom development work can be
reduced, but not completely done away with. Even if en-
terprise applications start off small, integration issues
usually arise sooner rather than later as applications
can only reach their full potential if they are integrated.

Heterogeneous IT Landscapes

Each of these representations comes with its own set of challenges and
costs. Some of them only become apparent after a while.

For example, the figure shows the fact that enterprise applications do not
usually stand alone. And when they do, it’s usually not for long.

On the contrary, they are usually integrated into complex IT landscapes
and only realise their full potential when they are linked to a range of inter-
nal and external applications.

2. Motivation and Approach

12

		

The many different representations of enterprise enti-
ties in the various software tiers are major cost drivers
in enterprise software development. How can the cost
of mapping these representations be reduced? Mod-
el-driven software development provides an answer to
this question. The idea behind it is modelling enterprise
entities and their relationships to each other. These
models can be defined and adjusted using specialist
editing tools.

Special interpreters and code generators translate the
models into the application.

The kicker is that the elaborate mapping of different
representations no longer needs to be done by hand.
The generators and interpreters do it. This means that
business content, which is subject to constant changes
in enterprise software, as previously mentioned, can be
displayed in the software much more quickly and with
less overhead.

Model-Driven
Development Advantages of Model-Based Development

�	 On-schedule implementation
	 Model-based development makes it possible for IT systems to be 	 	
	 implemented and delivered on time, even when business 	 	 	
	 requirements change frequently.

�	 Simplified dependency management
	 Model-based overall architecture simplifies managing dependencies. 	
	 This makes it possible to separate business expertise and technical 	 	
	 framework into separate release cycles. Furthermore, business 		
	 expertise can be broken down into specific models for each version 	 	
	 and data type. Each of these models is explicitly versioned, but is not 		
	 dependent on version and data type. Business changes can also go 	 	
	 live independently of each other for each data type and version.

�	 Less testing overhead
	 Testing can be extremely costly for custom-developed software that 	 	
	 is constantly being changed. Each version, data type and change 	 	
	 must be tested separately for each product. However, model-based 	 	
	 development reduces the need for business testing, which is limited 	 	
	 to the models.

�	 Clear path for technical innovation
	 As business expertise and technology are separate, technical 	 	
	 innovations can be made without having to consider all of the 	 	
	 application’s technical content. For example, you can 	 	 	
	 roll out new technology in the user interface design and 			
	 implementation, in persistence or in server processing.

2. Motivation and Approach

13

As a long term partner of public administrations, we
support our customers in their desire for a self-suffi-
cient approach to software. Business departments can
do this with A12; they can keep full control, even when
the applications are highly complex and integrated.

Control over business expertise - technology inter-
changeability

The strict division between business expertise and
technology provides great flexibility for further soft-
ware development over the long term. The business
models make up the software’s core; they can also be
adjusted and developed without the help of a software
developer. They are available as simple, open format
JSON files.

This separation of the business content makes it much
easier to change the technology. This would not be the
case if the business aspects were closely interwoven
into the code. One particular advantage is that the code
does not need to be completely rewritten with each
technical innovation. It is much easier to keep the tech-
nology up to date.

Control over data

For business-critical software, it is essential that sensi-
tive data is stored in a trustworthy, secure environment
and that smooth operation is guaranteed. We know just
how important it is to have control over your business;
we see this over and over again with our customers in
the e-commerce sector. During periods of higher de-
mand, like around Christmas, the systems run at maxi-
mum load for a long time without any downtime. Which
is why, on the one hand, software must be scalable and
high performance, while on the other, sole control over
the underlying infrastructure and the release stages in-
volved is also necessary.

Digital and Data Sovereignty
We offer the following options
for A12 installation:

�	 On-premises operation in the 		
	 company’s own data centre

�	 Operation on mgm’s private cloud, 	
	 hosted in a German data centre

�	 Cloud operation with 			
	 any cloud provider

2. Motivation and Approach

14

Plasma UI/UX Design System
Enterprise applications are characterised by high information
density and great complexity. Design languages such as Mate-
rial Design hit their limits quickly. They cannot fully respond to
some challenges, such as how to present complex tables, clear-
ly. Or how to develop the user interface structure consistently
when new information is added. This is why mgm developed
A12’s Plasma design system.

03

3. Plasma UI/UX design system

Efficient User
Interfaces for
Enterprise Software
Plasma comprises a variety of UI/UX components, us-
age patterns and design guidelines that can be used
to design consistent, efficient and attractive user in-
terfaces. And thus Plasma provides solutions for two
of the main UI requirements in enterprise applications:
scalability and complexity.

One of the main ideas behind Plasma is to reduce the
represented information density as much as possible.
Ideally, users are only presented with what they really
need for the tasks at hand. They can work faster and
more efficiently.

Methodology for
Coherent User
Experience

Accessible Web
Applications

Plasma also has a variety of reusable models and
components for requirements that appear repeatedly
in enterprise application user interfaces – from log-in
screens to validating user input. This includes models
for the application framework, navigation elements and
notifications, as well as concepts for handling enter-
prise objects and the standard workflows in which they
are integrated.

The importance of accessibility in web applications is
increasing. For several years now, public authorities
within the EU have been obliged to make websites and
mobile applications accessible. From 2025, according
to the European Accessibility Act, with a few exceptions
all websites and web applications must be accessible.
With Plasma, the A12 platform is explicitly designed
for building accessible web applications. Numerous UI
components - including the model-driven engines for
forms and overviews - are accessible out-of-the-box.
However, in the project practice of individual software
development, there are always additional aspects to
consider. There are specific requirements that a Low
Code platform per se cannot cover. For this purpose,
the A12 team offers projects practical assistance in
the form of a regularly updated guide. It contains, for
example, background information on accessibility cer-
tification, design specifications, and requirements for
modeling and development.

16

Unlike pure design languages like Material Design, Plasma also includes an
extended range of functions which enterprise applications usually require.
The figure provides an example of the overall concept for tables and all
common features. We have already implemented some of these features in
Plasma; others are still in progress.

The A12 Widgets showcase provides examples of all Plasma components.

3. Plasma UI/UX design system

A12 Widget Showcase
https://a12.mgm-tp.com/showcase/#/

17

Modeling Platform
The A12 modeling platform provides several modeling tools and a rule
language that can be used to map high levels of business complexi-
ty for enterprise applications. The following sections provide a brief
introduction to the modeling philosophy of A12 and introduce the main
models and tools.

04

4. Modeling Platform

Modeling:
A New Software
Development
Discipline?
The first step in the traditional development process in-
volves business analysts and the business department
working together to draft the requirements for the soft-
ware to be developed. Then, they describe the require-
ments in prose and give them to the development team.
We still use this traditional requirements analysis form
for projects that are based on A12 – albeit to a lesser
extent. But there is also another role: business analysts
and experts can use modeling tools to design and ad-
just large parts of the application independently. They
get much more creative leeway and become Co-De-
velopers/Citizen Developers. The adjacent figure illus-
trates the differences between the two approaches.

In most projects, mgm provides business analysts as
part of the development team. This is beneficial as
they are already familiar with the modeling tools and
techniques. Customer-side business experts are usu-
ally involved from the beginning of the project. After an
introduction to the modeling tools, they are then in a
position to adjust essential parts of the application on
their own.

The classic role allocation is shown on the left. Role allocation in

the model-based approach is shown on the right.

The business analyst helps the developer by independently

designing parts of the application.

Classic
development

process

A12
development

process

Business
Analyst

Business
AnalystDeveloper

Java Engine
(JVM)

Application

Java IDE Business
Editor

Application

Business
Analyst

Developer

Java IDE

Business
Engine

Java Engine
(JVM)

Empowered
Role in value
chain process

The Modeling
Concept of A12
The modeling approach of A12 differs in one essential
point from the modeling approaches of other low code
platforms: A12 follows the “data first” modeling paradigm.

Instead of starting with clicking together a user inter-
face, A12 modeling starts with the definition of busi-
ness relationships.

The decisive advantage of this approach is the clear
separation of the domain description from a specif-
ic application. This creates synergies through the
cross-application and cross-context use of domain ex-
pertise and great flexibility for the further development
and maintenance of long-lived enterprise software.

19

4. Modeling Platform

Main Modeling Dimensions

UI modeling
•	 Form models Long-arrow-alt-right Forms
•	 Overview models Long-arrow-alt-right Tables
•	 Tree models Long-arrow-alt-right Hierarchies

E E E

Data modeling
•	 Document model
•	 Relationship model
•	 Validation rules
•	 Calculations

DM

DM

DM

RM

App modeling
•	 Application framework

Workflow modeling
•	 Business processes based on BPMN 2.0 	
	 (Business Process Model and Notation)

20

Modeling Business
Expertise and
Application Logic

Defining the enterprise entities and their relationships
to each other in data models is an essential modeling
task. Business analysts and experts can use a mod-
eling tool to create and adjust the data structures of
mapped entities, such as contracts or products.
They can also use an integrated kernel language to de-
fine validation rules and computations, i.e. to map the
application logic. Relationship models can be used to
describe links between data models.

Modeling business-specific aspects keeps business
expertise and technology separate from each other.
Business content can be modified without any tech-
nical adjustments being needed. The technology can
be developed further without all the business content
having to be adjusted. We are confident that this sepa-
ration of business expertise and technology will shape
the future of enterprise software development. It accel-
erates development, prevents costly reimplementation
and makes it possible to adapt to changes rapidly.

4. Modeling Platform

Relationship between modeling aspects
and technical A12 products

The rule language for validations and
calculations is implemented in the
technical A12 component Kernel

1 The term “document model” indicates that technical han-
dling is document-oriented. In terms of content, document
models describe any «entities» that can also be understood
as part of a technical knowledge base.

App model

Form- / Overview- / Tree model

Rule language

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

D ATA S E R V I C E S

K E R N E L

U
A

A

RIGHT-LONG see also p. 43.

21

The modeling does not follow a what-you-see-is-what-
you-get principle. Instead, the models describe the un-
derlying structures of the user interface. This has the
advantage that the models are again independent of the
technical implementation. The plasma design system
is used for the actual representation. It ensures a co-
herent representation and a coherent user experience.

UI models usually refer to A12 data models. They estab-
lish connections between the fields of data models and
UI elements. Let’s take an input field as an example: A
UI model describes its position in a form, its label, and
possibly additional user instructions in a text field. A
data model specifies the underlying data type and val-
idation rules.

Modeling of User Interfaces

Based on the data models, business analysts are able
to create specific parts of the user interfaces using
A12’s modeling tools.

The modeling of the user interfaces is currently limit-
ed to the areas in which model-driven components are
used. A number of special UI models are available for
this purpose:

4. Modeling Platform

For each UI model, A12 provides
a corresponding engine -
the Form Engine, the Overview
Engine and the Tree Engine. They
bring the models to life in an
application.

Tree
models

Overview
models
provide many possi-
bilities for presenting
tabular data.

are used to display and
edit data structures
hierarchically.

define the structure and
content of online forms.

Form
models

FM OM TM RIGHT-LONG Read more on p. 41.

22

4. Modeling Platform

In the context of business applications, the challenge
of generating PDF documents arises again and again
- whether it is a contract in the insurance environment,
a proof of invoice in an online marketplace or the noti-
fication of a government service. With A12’s Print En-
gine Template Editor, print templates can be created
in an editor, saved as print models and easily brought
into A12 applications. The resulting PDFs are compliant

with the PDF/A standard and therefore accessible. The
editor enables the convenient design of pages and sec-
tions by adding and placing individual elements such
as text and images using drag & drop. Fields, calcula-
tions and tables can also be inserted directly, which re-
fer to selected A12 document models and are filled with
the corresponding stored data.

Modeling Print Templates

Modeling Workflows
For modeling business processes, A12 relies on BPMN
2.0 (Business Process Model and Notation), an existing,
established standard. The modeled business processes
fit seamlessly into the modeling concept of A12. Docu-
ment models describe the data used by a process. With
the help of form models, the respective user tasks can
be implemented in detail.

Modeling the Structure
of an Application
The framework of an application can be defined with
an App Model. It acts as a kind of container for all other
models.

The app model offers configurations
for certain functionalities of the tech-
nical component Client (see p. 	 		 42).

23

More Complex Modeling:
Composed Document
Models

With Composed Document Models (CDMs) it is possible
to use several document models in one engine - provided
that there is a relationship between the models (defined
in a Relationship Model). Thanks to CDMs, a form can be
fed with data defined in completely different models. The
modeling concept of A12 gains significantly in flexibility
and expressiveness through CDMs.

Since the release 2021.06 a first experimental version
is available. It enables the definition of CDMs and CDM-
based forms with the existing modeling tools, into which
fields from different document models can be brought.
Cross-model validation rules and calculations are sup-
ported.

4. Modeling Platform

E N G I N E 1

A12

DOCUMENT
MODEL

Document

Model 1

A12

DOCUMENT
MODEL

A12

DOCUMENT
MODEL

A12

DOCUMENT
MODELA12

DOCUMENT
MODEL

Document

Model 2

Document

Model 3

Document

Model 4

Document

Model 5

E N G I N E 2

24

C AT E G O R Y N A M E D E S C R I P T I O N

Data Model Document Model
A12 document models contain field definitions and associated validation rules in a hierarchy of
groups. Validation rules range from simple constraints - e.g., the definition of mandatory fields -
to complex patterns and conditions across multiple fields.

Relationship Model Relationship models describe links between documents.
They model the relationship properties and constraints.

UI Model Form Model
Form models define the structures and contents of online forms. A12 forms consist of common
UI elements such as input fields, buttons, labels, checkboxes, etc. The modeling tools provide
powerful ways to organize these elements.

Overview Model Overview models offer various possibilities for tabular presentation of data.

Tree Model Tree models allow data structures to be displayed and edited hierarchically.

Workflow BPMN 2.0 A12 supports modeling of business processes in the BPMN (Business Process Model and Notation)
standard. BPMN models interact seamlessly with A12 models.

App Model App Model An app model defines the framework of the application and acts as a kind of container for all
other models.

Output Model Print Model The Print Model can be used to create print templates for the generation of accessible PDFs.

The Model Types of A12

4. Modeling Platform

25

Business experts and analysts can create and modify
domain-specific models for enterprise applications us-
ing A12’s data modeling tools. No programming knowl-
edge necessary! Data models encapsulate the central
aspects of the enterprise logic. They describe the enti-
ties with which enterprise applications operate, such as
contracts and products with all their properties.

The use of data models
has several advantages:

�	 Reduced development costs and customisable 	 	
	 applications

�	 Business experts can modify the applications 	 	
	 on their own. Developers are not needed to 	 	
	 rework the implementation every single 	 	
	 time there is a change in the enterprise domain.

�	 The explicit direct storage in models makes 	 	
	 it possible to search for and research business 		
	 expertise. This also provides, for example, 	 	
	 explicit traceability of business changes.

�	 Improved reusability and independence 	 	
	 from technologies

An important part of data modeling in A12 is the rule 	
language for validations and computations. Based on
business requirements, it enables the definition of rules
that cover all conceivable field-related validation tasks.
The most comprehensive data validation possible is
crucial to avoid security risks and to ensure data integ-
rity in business applications.

The language contains many predefined predicates. It
supports nested comparisons, arithmetic operations
and provides special operators for handling elements
like dates. It also supports special conditions for check-
ing in which configuration fields may or may not be
specified. The various subconditions and operations
can be combined.

The modeling tools for document models support the
language directly. It has been successfully deployed for
years in large productive software systems. Our cus-
tomers use it in many projects to independently man-
age validation rules and computations.

The language combines the simplicity of the proposi-
tional logic with the expressiveness of the predicate
logic. It is particularly well suited for forms and strong
typing in business domains.

Advantages of “Data First”
Modeling With the A12 Rule Language

4. Modeling Platform

Creating a rule in SME

SME

26

M O D E L A B L E W I T H A12 I N D I V I D U A L LY R E A L I Z A B L E

Domain expertise -
data models with validation
rules and calculations

complex algorithms (e.g. generic
premium calculator in the insurance
environment)

Frame of an application
including placement of
model-driven engines

placement of
simple widgets

Forms, including
repeatable structures

definition or adaptation of design
elements

Tabular overviews
of data sets

Tree-like overviews
of data sets

Relationships between
different model-driven components

Workflows following the
BPMN 2.0 standard

The rule language has the
following key features:

�	 Rule conditions describe errors — the end-user is thus shown messages related to the 	
	 specific error scenario

�	 Use of logical connectives ‘And’ and ‘Or’ to combine different subconditions

�	 Negation operations are not used. Instead, the different predefined conditions are each 	
	 provided in positive and negative form. This ensures that the subconditions are simpler 	
	 and are compiled in a more uniformly structured way. This makes the rule conditions 	
	 more readable and clearer.

�	 Predicate logic quantifiers are not provided as formally logical parts of the language but 	
	 implicitly via operations. This ensures that the conditions are based on an expert’s 	
	 formulations and are therefore easier 	to understand.

�	 The rule languages’ logic operations allow the tree and repetitive structures to be 	
	 queried directly

�	 Supports set and filter operations on tree structures and repetitive structures, e.g. “add 	
	 up all capital gains from all 	equity funds”

�	 Facilitate iterations via repetitive structures and shorten the control conditions

�	 Computations and validations based on the same language, so the full validation 	
	 language can also be used for computation preconditions. All of the language’s set and 	
	 filter operations are available for formulating the computation operations and values 	
	 can be computed for all predefined field types

4. Modeling Platform Features:

�	 A powerful and versatile validation	 and computation language

�	 Auto-completion and syntax highlighting

�	 Predefined predicates for fields, lists of fields and groups that can be 	
	 combined freely

�	 Arithmetic operations, comparisons, special operators for processing

27

Modeling Tools
for Data, Form
and App Design

4. Modeling Platform

The central modeling tool of A12 is the A12 Simple
Model Editor (SME). It facilitates the editing of all A12
model types.

Simple Model Editor (SME)

The Simple Model Editor (SME) forms the control cen-
ter for modeling in A12. A noteworthy thing about it
is that the SME was built as a tool for A12 itself with
A12. With the Workspace Explorer of the SME all rele-
vant models of a project can be comfortably managed,
new models can be added and existing models can be
edited. The models in the workspace can be exported
individually or bundled or deployed directly on a server.

SME

The functional scope of the SME is continuously being de-
veloped further. In addition to textual modeling, the tool 	
also offers visual support for modeling relationships with
the Diagram Editor.

4. Modeling Platform

29

The version number of the
installer corresponds to the
version number of the
overall release.

4. Modeling Platform

Installer:
Using Modeling
Tools Locally
To be able to use the modeling tools of A12 locally, the 	
A12 Installer is available. It bundles all relevant tools in
one installation file. The installer is provided with each 	
release of A12 for Windows 10, macOS and Ubuntu Linux.

After installation, all modeling tools are ready for im-
mediate use.

A set of included sample apps makes it easy to get
started and provides a starting point for your own
modeled apps. With the help of the included Preview
App Control, modeled programs (preview apps) can
be executed locally in the browser. The Model Updat-
er enables convenient migration of models based on
older A12 versions.

PA R T S O F T H E I N S TA L L E R D E S C R I P T I O N

Simple Model Editor (SME) Modular tool that bundles numerous modeling functionalities of A12

Camunda Modeler Tool for modeling workflows

Preview App Control Application for running A12 applications in the browser

Model Updater Migration tool for updating existing, older A12 models

Workspaces Sample applications (preview apps) that demonstrate the modeling scope

Dokumentation
Reference to existing online documentation, which can optionally
be installed locally as well

With the help of the Model
Updater, existing models
can be easily migrated to
the latest version.

UP

30

Runtime Platform	
The A12 runtime platform consists of a set of mod-
ular client and server side components in a modern
enterprise architecture. It provides robust compo-
nents for typical enterprise application requirements.
At the same time, it gives the development team
full control through fine-grained entry points to plug
in their own code and implement individual project
requirements.

05

5. Runtime Platform

A Different Range of
Tasks for Developers
The model-driven approach also comes with a variety
of changes for developers, too. They are no longer
solely responsible for building the whole application.
Their workload is smaller, especially in relation to han-
dling business changes. The application can be com-
pared to a play; the models designed by the business
analysts are like the protagonists in the limelight. The
developers, however, make it possible for the play to
be performed at all. They prepare the stage and make
sure that the protagonists are shown in the best light.

Modeled business expertise reduces workload

In a conventional software project, the development
team is responsible for coding the whole application
on their own. To do this, the team must understand
the idea behind the application down to the smallest
detail. But that’s a massive challenge for highly com-
plex application fields, such as taxation or industrial
insurance.

The model-driven approach changes this
situation. Business analysts and experts
map the business logic in models and put
them directly into the software.

This greatly lessens the developers’ load. They no lon-
ger need to understand the modeled business aspects
nor implement it by hand. The focus of the work shifts.

Connecting, maintaining and
extending the application platform

Projects based on A12 do not start off as greenfield
projects. They build on an existing foundation. This
foundation isn’t static; it’s being constantly devel-
oped. One of the main things that the developers
have to do is to connect the foundation (the project’s
A12 application platform), maintain it and, if neces-
sary, extend it individually. The Technical Profession-
al Services Team provides support.

More complex functions and integration work

Developers also write code that implements more 	
complex functions. An example of this is a complex
computation that goes beyond the existing scope of
the modelling tools. Furthermore, one task still left to
the developers is to integrate the application into the
existing heterogeneous IT landscape.

32

Traditional Approach vs. Model-Based Approach

Traditional
approach

Changes

Customer Idea Requirement Understand
business details Implementation Result

D E V E L O P M E N T
T E A M

D E V E L O P M E N T
T E A M

B U S I N E S S
A N A LY S T S C U S T O M E R

Model-based
approach

Customer Idea
Business Analysts

A12-
M O D E L S D E V

Customer’s experts

Versions
Results

Customer /
Expert
approaches
Business
Analyst

The customer
and BA imple-
ment the idea
together directly
in a model.

The result
is immediately
visible and can
be improved in
an agile process.

DEV Team
develops
highly
individual
functions.

Integrated
Enterprise
application

�	 Requirements in Models	 	
	
�	 Develop together	
	
�	 Result visible immediately	
		
�	 Agile and fast

5. Runtime Platform

5. Runtime Platform

Architecture
The development process of business applications is
continuously shaped by technological changes. A12
meets these challenges and offers a runtime platform
for modern, web-based business applications. Start-
ing from a robust core and modular solution modules,
we continuously advance this platform on all levels.
For this purpose, we adapt new technologies and
paradigms, as long as they contribute to the goal of
making the development of high-quality business ap-
plications easier, more efficient and more sustainable.

We benefit from an important capability of the low-
code approach: many of the most complex and im-
portant aspects of the application are modeled in
A12 and can thus be expressed in a largely technolo-
gy-neutral way. In fact, even complex forms solutions
survive the technology shift from JSPs and XForms
(2012 and earlier) to Angular (circa 2015) to React
(2017 and later). The necessary foundations - the UI
engines as runtime interpreters of models - change,
but the models remain.

The A12 Client Framework addresses the complexity
and challenges of modern web applications using the
single-page application (SPA) approach. It is also the
basis for quickly building modularized frontends (Mi-
crofrontends). It leverages the modern and proven Re-
act/Redux technology stack, integrates A12 UI com-
ponents such as Engines and Widgets, and interacts
with A12 backend services such as A12 Data Services
and Workflows using REST APIs. Data and models are
JSON data documents. Custom backends can be eas-
ily connected, just as overall most aspects of the A12
client framework can be customized or even overrid-
den through extension points.

The server-side A12 services provide, among others,
the data services for the aspects of data storage,
search, and model repository, as well as workflows
(Camunda/BPMN 2), authentication/login (LDAP,
SAML, OpenID Connect, OAuth 2, JWT), and user/role
management. The services are built on Spring Boot

and can be used out-of-the-box, but also easily ex-
tended with customer-specific code. Behind this are
supporting open source products, including Postgres
as database, Solr for the search index, Camunda as
workflow engine (optional), Keycloak for access man-
agement and single sign-on (optional).

A P P

C L I E NT

Engine Engine

Widget Widget

Widget Widget

Widget Widget

Widget Widget

S E R V E R

App

Rest API

J S O N / X M L
Data Document

Persistence Service

Authentication
/ Login

(Qauth2 / JWT)

Workflow
(B P M N2)

34

5. Runtime Platform

Document-Oriented Data
Access and Model Graph

The A12 architecture is based on the concept of hier-
archical collections of field values in JSON documents
(Documents for short). Clients can access and store
these Documents. Document models (schemas) spec-
ify not only field types, but also validation/integrity
rules and computations in our highly expressive kernel
DSL (Domain-Specific Language). These rules are au-
tomatically evaluated by the Form Engine during form
processing, for example. Search results are provided by
the search service using Solr search indexes.

�	 Relationships between Documents are fully sup-
ported; Documents can be linked and relationship
properties and constraints can be modeled and
are enforced by A12 Data Services. Furthermore,
there is an inheritance concept (Subtyping) for
Document models. This allows more complex do-
mains to be expressed as a graph of Document
models; we call this the Model Graph. Our tree
engine uses the model graph to represent linked
documents in a tree view, for example.

�	 Thanks to the mentioned CDMs, views on the model
graph can be queried, analogous to GraphQL.

�	 Batches: The A12 Data Services API provides a
Batch REST endpoint for transactional bundling of
multiple document operations, such as creating a
new document with simultaneous linking to anoth-
er document. There is also an operation to partial-
ly modify documents to reduce network traffic.

The A12 architecture places a strong emphasis on
simplifying client-side application development. It pro-
vides a field-proven application framework provided
by the A12 Client Framework, Engines for working with
models, and Widgets for reusable UI components.

The application framework uses an Application Model
to control the interaction of the Engines, such as in a
Master/Detail context. Written in TypeScript, the A12
client framework is based on React and uses Redux for
state management and caching.

The framework offers a variety of integrations: a data
access abstraction “Data Provider” with built-in sup-
port for A12 Data Services, the connection of process
engines with built-in support for Camunda/A12 work-
flows (such as task lists), an A12 Data Distribution Cli-
ent (data sync, offline capability), and notifications via
the Notification Center.

In addition, the A12 Client Framework offers many use-
ful and powerful features such as asynchronous flow
control using Redux Saga, dirty handling and undo

mechanisms, URL routing, a layout provider abstrac-
tion with responsive defaults for desktop and mobile
devices, and localization.

An A12 Frontend Client can be modularized accord-
ing to the Microfrontend pattern. For this purpose, we
technically use “Module Federation” from Webpack and
have developed an application module registry based
on it, allowing dynamic integration of these modules,
for example according to user roles.

A12 Frontends

35

A12 Backend Services

The fundamental backend service is A12 Data Ser-
vices. It provides access to models and Documents
and also handles login with SSO support and optional
Keycloak integration (LDAP, SAML, OpenId Connect,
OAuth 2, JWT). The APIs are available as stateless
REST endpoints and in Java. Persistence of Data Doc-
uments is supported by a set of reliable technologies
such as Apache Solr – one of the world’s most popu-
lar search platforms.

A12 Data Services, like all other server-side A12 ser-
vices, leverages the Spring Boot framework and is
available in three forms: as a standalone application,
as a Spring Boot project for project-specific applica-
tions with custom code, or as a library to leverage
selective features in existing Spring applications. In
addition, there are numerous extension points and a
comprehensive event system for easy integration of
custom code handling before and after operations.

For scaling, the services can be operated in a Ha-
zelcast cluster. Such a cluster can then be dynamical-
ly adapted to the load under Kubernetes. Our A12 Proj-
ect Template already offers configurations for this.

Other server-side A12 services include A12 Workflows
(based on Camunda/BPMN 2) and the A12 User Man-
agement Service with IDP support (Keycloak). There
is also A12 Data Distribution, a highly scalable data
distribution and sync solution with offline client capa-
bility. The Notification Service uses A12 Data Distribu-
tion for notification delivery.

The A12 Kernel is used on the client and server side.
It validates data and computes derived data based
on rules and field types described in data document
schemas (called Document Models). Code generation

ensures native code for both client and server. On the
Frontend, the rules and calculations are executed as
native JavaScript, providing immediate feedback to
the user during form processing.

5. Runtime Platform

Search Engine
(Solr)

Messaging
Database

(Postgres SQL)

Authentification &
Authorization

(Keycloak)

Extension points:

•	 ExecutionSteps

•	 Custom Batch Operations

•	 Custom Persistence Drivers

Login
Models incl.

Model Graph

A12 Client

Single

Documents
Batch (Query/Mutations)

for Documents and Links

Login

Service

Model

Service

Document

Service

Model

Persistance

(FS)

Document

Persistance
Search

A 1 2 S E R V I C E S

.. .

others

Ap
pl
ic
at
io
n-
sp

ec
ifi
c
Se

rv
ic
es

Event

Delivery

36

Project Scenario
for the Use of A12

Thanks to its modular design, A12 can be used very
flexibly and is also ideally suited for Microservice ar-
chitectures and Microfrontends with extensive sup-
port in the framework. The following diagram demon-
strates how the building blocks of A12 can interact
with project-specific extensions and services as well
as third-party components in a Microservice context:

About the Frontend: The resulting web application
is dynamically composed of several parts and corre-
sponding frontend projects: the application shell and
two Microfrontends provided by the customer’s own
Microservices (A and B).

A12 components are used: the widgets and engines
are customized and the A12 client framework is ex-
tended to meet the respective project requirements.
For example, one can query data from the REST APIs
of one’s own microservices and prepare it as JSON
documents via data provider abstraction, making it
accessible to the engines.

The server side consists of

•	 A12 services with optional project-specific
customizations and

•	 any project-specific services (e.g. as Microser-
vice) with or without A12-specific extensions (e.g.
the A12 Kernel as library or A12 Data Services as
dependency).

5. Runtime Platform

Project-Specific Services

A12 Services

3rd-Party Services

MyApp

CLIENT

A12
Data Services

A12
Workflows

Service	A Service	B

Camunda Postgres Solr X Y

SERVER

37

5. Runtime Platform

Components
A12’s runtime platform is modular and
consists of a series of loosely interconnect-
ed components. Depending on the situation,
they can be used flexibly in the project, even
individually.

Most projects use the Client-Engine-Widget
trio. Some projects use the back-end and
server services provided by the Data Ser-
vices module. Others write their own server
depending on their requirements.

E N G I N E S

C L I E N T

W I D G E T S

A12

W O R K F L O W S

DATA S E R V I C E S

K E R N E L

U
A

A

PRO D U CT N A M E A B B R E V I ATIO N D E SC RI P TIO N

Client

Model-driven, client-side runtime component. Implements the UI/UX concept of the
Plasma Design System and supports desktop, tablet and smartphone. Main tasks are
the orchestration of other UI components, especially the A12 engines, data retrieval
and state management.

Engines
Model-driven UI components. Engines interpret data and UI models.
They are based on the Plasma UI/UX concepts and use the widgets for rendering.

Widgets
Widget Library, based on Plasma UI/UX concepts.
See also RIGHT-LONG A12 Widget Showcase.

Kernel
Bundles everything for the creation and processing of document models:
modeling tools, language for validations and calculations, client- and server-side runtime
components, Java and Typescript API.

Data Services
API for managing models and data. It also contains routines for client/server
communication, validation, persistence and indexing.

User Management, Authentication

and Authorization

Bundles solutions around authentication (Keycloak, OAuth 2.0, SAML, LDAP),
authorization (Spring Security, RBAC, ABAC, custom logic) and user management

Workflows
 Integration of Business Process Model and Notation (BPMN) in A12;

enables graphical modeling of server-side workflows and their execution

Data Distribution Transport layer for synchronization of data

Notification Center Communication center for notifications such as tasks, appointments and reminders

W

E

C

K

DS

WF

UAA

DD

5. Runtime Platform

NC

39

https://a12.mgm-tp.com/showcase/#/

5. Runtime Platform

Widgets are reusable UI components that follow Plas-
ma design conventions and UX concepts. They support
enterprise applications that run on desktops, tablets
and smartphones with keyboard, mouse and touch
input. The components provide an easy-to-use, well
documented, strongly typed API and are extensible and
customisable.

WidgetsW

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

Features:

	� Desktop, tablet and smartphone support

	� Keyboard, mouse and touch

	� Accessibility

	� Browser compatibility

	� Programming API

	� Extendable

	� Seamless integration with A12 engines 	
	 and servers

40

A12 engines are implemented in TypeScript. They are
self-contained runtime components that interpret data
and UI models. They are based on Plasma UI/UX con-
cepts and use widgets for rendering.

EnginesE

5. Runtime Platform

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

Features:

	� Data model driven

	� Data model editor

	� Field type checking

	� Field type conversion

	� Validation and computation

	� Client and server-side runtime components

	� Programming API (Java and TypeScript)

C L I E N T

S E R V E R

41

5. Runtime Platform

The model-driven, client-side runtime component
makes it possible to declare the core aspects of the
application, the modules, the navigation, the screens
and the most important interaction patterns. Its main
task is orchestrating other UI components, especially
the A12 engines.
It also organises handling requests, data retrieval and
processing, and status management. The client com-
ponent implements the Plasma design system UI/UX
concept and supports desktops, tablets and smart-
phones.

ClientC

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

A S Y N C H R O N O U S
P R O C E S S E S

Features:

�	 Framework for client applications

�	 Driven in part by an application model

�	 State management & dirty handling

�	 Asynchronous background processes

�	 Navigation & routing

�	 Screen composition & layout

�	 Desktop, tablet und smartphone support

�	 Notifications / Localization / Logging

�	 UI/UX concept based on A12 Plasma

42

C L I E N T

S E R V E R

P R O G R A M M I N G
L A N G U A G E

The kernel component bundles basic functions for cre-
ating and processing data models. Above all, it defines
A12’s domain-specific languages (DSL).

This includes all bases for validations and computa-
tions that are part of business modeling. The compo-
nent includes client and server-side runtime compo-
nents and a Java and TypeScript API.

KernelK

The kernel component includes the A12 DSLs,
among other things

5. Runtime Platform

43

P R O G R A M M I N G
L A N G U A G E

5. Runtime Platform

The Data Services component provides an API for
managing models. It also includes routines for client/
server communication, authentication, authorisation,
validation, persistence and indexing. It is programmed
in TypeScript for the client side and in Java for the cli-
ent and server side.

Data ServicesD

The services component provides central server-side services

A P P L I C AT I O N S E R V E R

D ATA B A S E

I N D E X

C L I E N T

S E R V E R

Features:
�	 Access to models and documents

�	 Client/server communication

�	 Validation & computation (based on Kernel)

�	 Persistence

�	 Indexing & Search

�	 Import / Export

�	 Logging

�	 API

�	 Configuration

44

A12 uses Keycloak, a tried-and-tested open-source solu-
tion, for authentication. It also supports both OAuth 2.0
with OpenID and SAML token-based SSO authentication
and connection to LDAP.

A12’s UAA components also provide a highly flexible
and powerful authorisation solution, which can provide
access rights in different levels of granularity. Both role-
based and more complex, attribute-based rules can be
specified, thus protecting access down to the field level
of data documents.

The UAA component is supplied as a library. It can there-
fore be integrated both in the A12 server and in the ap-
plication’s standalone services. The access rules and
other authorisation configurations are sourced from a
policy repository.

The UAA solution is based on the well-known NiST ABAC
reference architecture.

User Management,
Authentication
& Authorization (UAA)

The UAA solution is based on NiST ABAC reference architecture

UAA

5. Runtime Platform

Policy Enforcement
Point (PEP)

Policy Decision Point
(PDP)

Subject Object

Policy Information Point
(PIP)

Policy Administration Point
(PAP)

Policy
Repository

Environment
Conditions

Attribute
Repository

Authorization Services

45

5. Runtime Platform

A12 Workflows provide a lightweight service that inte-
grates business process model and notation (BPMN)
modeling functionality into A12. This makes it possible
to perform graphic modeling of server-side workflows
and their execution.

The A12 workflow service can be activated as an exten-
sion to other A12 products and integrates seamlessly
into the A12 architecture.

In this manner, documents can be used as inputs and
outputs for A12 workflows, and the user interface for
user tasks can be created using the existing A12 mod-
elling approach.

In addition to user tasks, automatically executable
tasks such as service tasks or script executions can
also be modeled, allowing the realisation of partially
and fully automated workflows using process modules.
Camunda’s BPMN Workflow Engine is used as a central
component of A12 workflows.

WorkflowsWF

You can easily extend A12-based applications with a
chat functionality using the A12 chatbot solution. The
A12 chatbot is an extension that can be activated to-
gether with other A12 products. It includes a server and
client-side component.

The chatbot service uses the open source product Rocket
Chat on the server. It interacts with the frontend compo-
nent for fully automated chatting as well as forwarding
to an employee. The chat frontend is also optimised for
use on both desktop PCs and mobile devices.

Chatbot

Chat add-on based on Rocket Chat

iOS / Android

Proxy

Rocket Chat

ServerS
E

R
V

E
R

-
IN

F
R

A
R

S
T

R
U

C
T

U
R

E

Browser
(also mobile)

Hello, how
can I help you?

Hi! I have
a question...

Hello, how
can I help you?

Hi! I have
a question...

Service Frontend
(Browser)

Features:
�	 Model driven business processes

�	 Server side / asynchronous / semiautomated

�	 BPMN2

�	 Camunda process engine

�	 Camunda model editor

�	 Integrating with A12 modeled data

46

Fast and secure synchronization of data is one of the
most demanding technical tasks in full-blown business
applications - especially when not all systems involved
are permanently online. The Data Distribution compo-
nent of A12 is a transport layer that specializes in exactly
this. The technical service is designed to distribute data
between servers and clients and to propagate changes
- especially in scenarios where clients are temporarily
offline. The component’s origins lie in an e-commerce
project, in which it manages the data synchronization of
a global store network.

Data Distribution

Not included in A12 Platform license

DD

5. Runtime Platform

47

5. Runtime Platform

In the context of business applications, employees are
typically flooded with a number of different messages.
There is information about new tasks, messages from
various communication channels, as well as appoint-
ments and reminders. With the Notification Center, all
these messages in business applications can be bun-
dled in one central location. It serves as a collection
point for different types of notifications based on dif-
ferent business use cases, structured views, different
filters and user preferences. The Notification Center
integrates seamlessly with A12-based applications. It
provides several predefined notification types. Using
the Notification Center’s API, the development team
can also create their own custom notification types
quickly and conveniently.

Notification CenterNC

Not included in A12 Platform license

P R O G R A M M I N G
L A N G U A G E

V I E W

S TAT E

A S Y N C H R O N O U S
P R O C E S S E S

B AC K E N D

48

5. Runtime Platform

Project Template
The A12 Project Template provides a starting point for
development teams to conveniently set up A12 projects
and quickly bring A12 applications into production.
Among other things, it contains standardized build
pipelines as well as development and test environments
and covers basic security requirements. At its core, the
template includes the A12 components Data Services,
Client and UAA. Keycloak is set as the identity provider,
and the authentication type is OpenIDConnect/Oauth2
in the default case. Optional components such as work-
flows, the Notification Center and the Print Engine can
be integrated in a standardized way if required.

Client Server

src
Frontend Code | Appmodel | Application

Setup

ressources
Static Resources | Index.html | Images

init
Initialize Models and Documents for

Cluster Environments

app
Backend Code

common
Models, Document Resources

compose
Docker Compose Configuration

e2e
End-to-end-tests

jenkinsPipelines
Jenkins Pipelines for Continuous Integration

49

Operations
The A12 platform can be run on-premise in the com-
pany’s own or external data center. In addition, mgm
offers hosting in mgm’s private cloud in a data center
in Germany. Another option is to run it in the cloud with
any cloud provider.

Cluster capability - A12 is Kubernetes-ready

A12 applications are designed for deployment on Ku-
bernetes clusters. Built on the A12 project template,
A12 provides a standardized way to build and deploy
applications to all common development and produc-
tion environments (DEV, TEST, and PROD clusters). Us-
ing the following templates, the DevOps team can very
quickly set up and customize the build and deployment
processes for A12 applications in a proven manner:

•	 Helm A12 Stack
A collection of charts for Helm - the popular Ku-
bernetes package manager - enables Kubernetes
deployment out-of-the-box.

•	 Logging & Monitoring
If the particular operating environment does not
specify specific logging and monitoring solutions,
A12’s standardized logging and monitoring setup
(based on Loki and Prometheus) can be used.
The state of the overall system can be checked at
any time via Grafana dashboards.

•	 A12 Build and Deployment Pipelines
Pre-built Jenkins pipelines automate the build
and deployment processes of A12 applications. A
build pipeline creates Docker images of an appli-
cation and publishes them to a Docker registry. A
deployment pipeline provisions an environment
on a cluster.

5. Runtime Platform

50

5. Runtime Platform

Separate Git repository for
deployment configurations

In addition to a repository for the program code, every
A12 project inherently contains a repository for the
configuration of the environments to which the software
is deployed. Code and configuration are thus cleanly
separated from each other. In addition, changes to the
configuration automatically trigger certain Jenkins jobs.
For example, adjusting the configuration allows a specific
version to be deployed to the TEST environment. At the
same time, it is always transparent who uploaded which
version and when.

Hosting options for
multiple A12 applications

There are a number of options for
hosting multiple A12-based applications:

�	 Isolation via user rights and 			
	 otherwise “mixed operation”.			
	 It is possible to run a central A12 platform running 	
	 multiple separate A12 applications. If, for example, 	
	 users 	have access to several specialist applications, 	
	 the data and model view could be controlled via rights.
	 Services used across all applications can also be 	
	 shared.

�	 Isolation through separate deployments
	 If the A12 applications are to be run in isolation from 	
	 each other, the A12-specific services (database, Solr, 	
	 etc.) must be deployed separately for each separate 	
	 runtime environment.

Modularization of deployed artifacts

The frontend part of an A12 application can be de-
ployed as an NPM package. The models are deployed
separately in the corresponding servers: the workflow
model is installed (or updated) in Camunda and the
data/form models are injected into the A12 Platform
server (via the import API using REST call).

For the communication with surrounding
systems several options are possible:

�	 Make data from the peripheral system 		
	 available to the client as A12 Documents.

	 Option 1: Peripheral system actively pushes data
	 The data from the peripheral system is actively made 	
	 available by the surrounding system, e.g. via JMS 	
	 messaging (transactionally secure) directly to the A12 	
	 server (which is extended by JMS listeners for 	 	
	 this purpose). Or by calling the data services APIs 	
	 remotely on the side of the surrounding system. 		
	 For this purpose we offer a JSON-RPC API with CRUD 	
	 and other operations. These operations can be 		
	 sent in batch, which are then processed in a common 	
	 transaction. But you can also define your own Spring 	
	 MVC REST endpoint or JSON-RPC “Custom Operations”
	 - this is successfully practiced in many projects.		
	
	

	 Option 2: A12 Data Server calls repository 		
	 on demand (“replaces database”).
	 One can easily implement a custom Spring repository 	
	 for a document type that redirects CRUD and list 	
	 operations to the Umsystem. The repository would 	
	 then not use JDBC, but work via messaging (JMS) 	
	 or REST/SOAP. Note here that only JMS messaging 	
	 runs in Java EE transactions.

�	 Offer operations of the surrounding system “directly
	 If the peripheral system is more likely to offer 		
	 operations, or the data is to be seen directly by the 	
	 client (i.e., not as A12-compliant documents), then one 	
	 can provide a server-side service to the client that 	
	 serves as a facade/adapter between the client and the 	
	 surrounding system.
	 As a standalone service, this service can be 	 	
	 provided via Spring Boot or based on another 	 	
	 framework or a non-JVM runtime. Authentication and 	
	 authorization is provided via A12 UAA. The service can 	
	 implement the calls internally as desired. REST or 	
	 better JSON-RPC is recommended as endpoints visible 	
	 to the client.

�	 Direct call of the surrounding
	 systems from the client		
	 This is technically possible. However, direct access to	
	 backend systems without UAA is not recommended 	
	 due to security concerns and SSO/CORS complications.

51

Appendix A: Technologies
The separation of business expertise and technology
allows the technologies used to be exchanged as
required. On the following pages you will find an over-
view of the current A12 technology stack.

06

Technologies currently in use

6. Appendix A: Technologies

W

K

A12 PRO D U CT TEC H N O LOGY D E SC RI P TIO N

Kernel Java

Typescript

Groovy

Antlr Parser generator

StringTemplates Template engine

JAXB Mapping Java objects to XML

Jackson JSON processor for Java

Widgets Typescript

React Building UIs

Styled Components CSS styling

Recharts Chart library

DraftJS Rich text editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

UAA Typescript

Redux State management

oidc-client-js OpenIdConnect authentication protocol

Java

Spring Application framework for the Java platform

Spring Boot Auto configuration for Spring application

UAA

53

6. Appendix A: Technologies

Spring-security Spring security approach for authorization (SpEL - Spring Expression)

KeyCloak Identity and access management

OAuth2/OpenID Protocol for authentication

SAML Protocol for authentication

LDAP Protocol for accessing and maintaining distributed directory information services over an IP network

Data Services Java

Apache solr Search index

WildFly Application server

Apache Tomcat Application server

Eclipse Jetty Application server

PostgreSQL Database

Oracle Database

H2 Local In-Memory-DB

Spring Security Authentication, authorization

Spring Boot Auto configuration for Spring application

NodeJS Java runtime environment

Typescript API

Workflows Kotlin

Spring Application framework for the Java platform

Spring Boot Auto configuration for Spring application

Camunda Platform for BPMN workflow and DMN decision automation

Typescript Frontend

React Building UIs

DS

WF

54

Webpack JavaScript module bundler

NPM Package manager for JavaScript

Overview Engine Typescript

React Building UIs

Stylus CSS preprocessor

Recharts Chart library

DraftJS Rich text editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

Form Engine TypeScript

JavaScript

TSLint Analysing Typescript

NodeJS Java runtime environment

NPM Package manager for JavaScript

Lerna Managing multi-package repositories

Webpack JavaScript module bundler

React Building UIs

Redux State management

Marked Markdown in expression language

Jison Expression language

moment.js JavaScript wrapper for the date object

6. Appendix A: Technologies

O

F

55

Tree Engine Typescript

React Building UIs

Stylus CSS preprocessor

Recharts Chart library

DraftJS Rich text editor

React-Dnd Drag and drop handling

React-virtualized Rendering partial data into DOM

Redux State management

Chat Solution A12 Client Frontend

A12 Widgets Frontend

Rocket.Chat Web chat platform

NodeJS Java runtime environment

MongoDB Data persistence

Chatbot Python

Rasa Chatbot development framework

Tensor-flow Machine learning/differentiable programming framework

Scikit-learn Machine learning library

Flask Web framework

Client Typescript

JavaScript

TSLint Analysing Typescript

NodeJS Java runtime environment

NPM Package manager for JavaScript

6. Appendix A: Technologies

T

C

56

6. Appendix A: Technologies

Lerna Managing multi-package repositories

Webpack JavaScript module bundler

React Building UIs

Redux State management

Inversify Configuration injection

Simple Model Editor A12 Frontend

Typescript

React Building UIs

Redux State management

Redux Saga Library used to handle side effects in Redux

A12 Installer Typescript

React Building UIs

Redux State management

Redux Saga Library used to handle side effects in Redux

Spring Boot Auto configuration for spring application

H2 Database Local in-Memory-DB

Electron Software framework to develop desktop GUI applications using web technologies

Plasma Design Adobe Illustrator Creating graphical user interfaces

Adobe XD Creating screens and lo-fi prototypes

Azure Creating hi-fi prototypes

PUG Template engine – create reusable HTML

BEM Creating extendable and reusable CSS

Documentation Asciidoc User documentation

SME

57

Typedoc Generating API documentation for TypeScript

Javadoc Generating API documentation for Java

QA, Testing & Security Enzyme Unit tests

Cypress Integration tests

Testcontainers Integration/system tests based on Docker containers

JUnit 5 Testing framework for Java applications

MockK For Kotlin

H2 Local in-Memory-DB

QFS-Test-Suite Automated surface tests

PerfLoad Load testing

Selenium Browser automation

Mocha Javascript test framework

TestCafe Automating end-to-end web testing

Sonarqube Continuous inspection of code quality

OWASP
Dependency Check Scanning for vulnerabilities

TestRail Managing and tracking testing

JAX-RS Integration tests

jMeter Functional behavior and performance tests

TestNG Unit, functional, end-to-end, integration tests

Python Orchestrating security test suite

Docker Running security test suite

Sqlite, MariaDB Persistent Storage for licenses, credentials, configuration

OWASP ZAP Dynamic application security testing

6. Appendix A: Technologies

58

Postman/Newman REST client for API testing

OWASP DefectDojo Security reporting and monitoring

Xanitizer Static application security testing

Chai Assertion library for Node

NYC Test coverage reporting

NPM audit Security review of project’s dependency tree

Hamcrest Creating customized assertion matchers

Runtime Docker /
Docker-compose Defining and running multi-container Docker applications

Kubernetes Managing containerized workloads and services

Prometheus Systems monitoring and alerting toolkit

Grafana Analytics & monitoring

ELK (Elastic,
Logstash, Kibana) Log management

Ansible Automating configuration management & application deployment

Development-
Infrastructure Jenkins Automation of builds and deployment

Artifactory Managing code repositories

GIT Version control

Bitbucket Code collaboration & version control

Gradle Build automation

Maven Build automation

Webpack JavaScript module bundler

NPM Package manager for JavaScript

6. Appendix A: Technologies

59

mgm technology partners GmbH
Taunusstr. 23

80807 Munich
Germany

Tel +49 89 / 35 86 80-0
www.mgm-tp.com
info@mgm-tp.com

